Simplify algebraic fractions

Factorise the numerator and denominator if possible, divide by the common factors.

Eg.
$$x^2 + 5x + 4$$

 $2x + 8$

$$= (x+4)(x+1)$$

Add or subtract algebraic fractions

You need to have a common denominator to be able to add or subtract fractions.

$$\frac{a}{b} \pm \frac{c}{d} = \frac{ad}{bd} \pm \frac{bc}{bd}$$
$$= \frac{ad \pm bc}{bd}$$

Multiply algebraic fractions

Multiply the numerators together and then the denominators.

$$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{ba}$$

Year 10 higher topic 17

More Algebra

What careers would use these skills?

Surds are used when calculations need to be precise eg. Engineers.

Simplify surds

Split the surd into two factors, one must be a square number to be able to simplify. Eg.

$$\sqrt{50} = \sqrt{25 \times 2}$$
$$= \sqrt{25} \times \sqrt{2}$$
$$= 5 \times \sqrt{2}$$
$$= 5\sqrt{2}$$

Rationalise the denominator

Means remove the surd from the denominator, do this by

tor, do this by multiplying.
$$\frac{1}{\sqrt{7}} = \frac{1}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}} = \frac{\sqrt{7}}{7}$$

$$\frac{1}{5+\sqrt{2}} = \frac{1}{5+\sqrt{2}} \times \frac{5-\sqrt{2}}{5-\sqrt{2}}$$
$$= \frac{5-\sqrt{2}}{3}$$

Divide algebraic fractions

Multiply the first fraction by the reciprocal of the second fraction.

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}$$
$$= \frac{ad}{bc}$$

Change subject of the formula

Use inverse operations on both sides of the formula (balancing method) until you find the expression for the letter.

Eg. Make x the subject of
$$y = \frac{2x-1}{z}$$

Multiply both sides by z

$$yz = 2x - 1$$

Add 1 to both sides

$$yz + 1 = 2x$$

Divide by 2 on both sides

$$\frac{yz+1}{2}=x$$

We now have x as the subject.

Inverse functions

A function that performs the opposite process of the original function, it is written as f $^{-1}$ (x)

- 1. Write the function as y = f(x)
- 2. Rearrange to make x the subject
- 3. Replace the y with x and the x with f $^{-1}$ (x)
- Eg. $f(x) = (1 2x)^5$ Find the inverse.

$$y = (1 - 2x)^5$$

$$\sqrt[5]{y} = 1 - 2x$$

$$1 - \sqrt[5]{y} = 2x$$

$$\frac{1 - \sqrt[5]{y}}{2} = x$$

$$f^{-1}(x) = \frac{1 - \sqrt[5]{x}}{2}$$

Composite functions

A combination of two or more functions to create a new function.

fg (x) is a composite function that substitutes the function g(x) into the function f(x).

fg (x) means do g first then f

gf (x) means do f first then g