Speed, distance and time calculations

James runs at a speed of 4 miles an hour, he runs for 2 hours 15

minutes, how far

does he run?

(Convert time to decimals)

2h15 = 2.25 hours

 $D = S \times T$

 $D = 4 \times 2.5$

= 10 miles

Metric/imperial conversions

5 miles ≈ 8 kilometres

1 gallon ≈ 4.5 litres

2.2 pounds ≈ 1 kilogram

1 inch ≈ 2.5 centimetres

Metric conversions

1km = 1000m

1m = 100cm

1cm = 10mm

Year 10 foundation topic 14

Multiplicative reasoning

What careers would use these skills?
Finance, car sales, scientists, sports
analyst, formula 1 engineers, athletes.

Percentage to decimal

conversion

To convert from a percentage to a decimal, divide by 100.

Eg.20% = 0.2

5% = 0.05

12.5% = 0.125

Calculate percentage change

 $\frac{Difference}{Original} \times 100\%$

Eg.

A games console is bought for £200 and sold for £250. What is the percentage change?

The difference is 250 - 200 = 50

% change = <u>50</u> x 100

200

= 25% increase

Decimal multipliers

These are used to find a percentage of an amount, a percentage increase and a percentage decrease.

To find a percentage of an amount, convert the percentage to a decimal and multiply it by the amount.

To find a percentage increase 100 + % increase

100

then multiply it by the amount

To find a percentage decrease 100 — % decrease

100

then multiply it by the amount

Repeated percentage change (use decimal multipliers)

Compound interest = Interest paid on the original amount and the accumulated interest

<u>Example</u> A bank pays 5% compound interest a year. Bob invests £3000. How much will he have after 7 years.

 $3000 \times 1.05^7 = £4221.30$

Depreciation = a decrease in value of an item over time

<u>Example</u> A car costs £19,000, it depreciates in value by 10% a year, how much is it worth after 6 years?

 $19000 \times 0.9^6 = £10097.38$ (remember to round money to 2 decimal places)

Growth and decay problems

Exponential growth = When we multiply a number repeatedly by the same number (\neq 1), resulting in the number increasing by the same proportion each time. The original amount can grow very quickly in exponential growth.

Exponential decay = When we multiply a number repeatedly by the same number (0 < x < 1), resulting in the number decreasing by the same proportion each time. The amount can decrease very quickly.