
Direct proportion

If two quantities are in direct proportion, as one increases, the other increases at the same rate.

If y is directly proportional to x, this can be written as

 $y \propto x$

An equation of the form y = kxrepresents direct proportion, where k is ___ the constant of proportionality.

E.g. p is directly proportional to q and when p = 12, q = 4. Find p when q = 20.

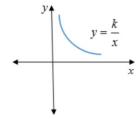
Write a direct proportion equation: p = kq

Substitute the values given and solve it to find k: 12 = k x 4 so k = 3 and the equation is p = 3q

Now substitute in the value we are given: $p = 3 \times 20 = 60$

Year 11 Higher topic 19 **Proportion and Graphs**

What careers would use these skills?


Most jobs in banking and finance, distribution and production, architect, engineer, map maker, baker, nurse, web developer...

Inverse proportion

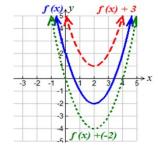
If two quantities are inversely proportional, as one increases, the other decreases at the same rate.

If y is inversely proportional to x, this can be written as

$$y \propto \frac{1}{x}$$

An equation of the form

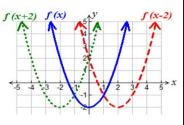
$$y = \frac{k}{x}$$


represents inverse proportion.

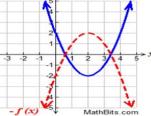
Graph transformations

$$f(x) + a$$

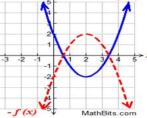
Vertical translation up a units.



$$f(x+a)$$

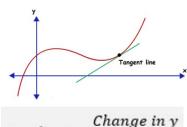

Horizontal translation left a units.

$$\binom{-a}{0}$$

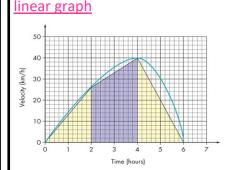


-f(x)

Reflection over the x-axis.

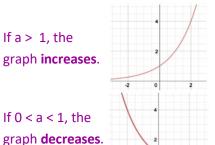

Reflection over the y-axis.

Calculate gradient of a tangent at a point


A tangent to a curve is a straight line that touches a curve at **exactly one point**.

Change in x

Gradient =


Estimate the area under a non-

To estimate the area under a curve, split it up into simpler shapes; rectangles, triangles and trapeziums.

Exponential graphs

The equation is of the form $y = a^x$, where a is a number called the **base**.

