

Year 7 higher topic 10
Sequences and graphs

What careers would use these skills?

Economist, building surveyor, Biologist, conservationist, air traffic controller, meteorologist

Term-to-term rule

Numbers in a **sequence** are called **terms**. Numbers *increase* in **ascending** sequences and numbers *decrease* in **descending** sequences. A **finite** sequence has a fixed number of terms (a beginning and end.) An **infinite** sequence goes on forever. You can describe a sequence by giving the **first term** and the **term-to-term rule**. The term-to-term rule tells you how you get from one term to the next.

Arithmetic sequences

An **arithmetic sequence** goes up or down in equal steps. This step is called the **common difference.**

Nth term

n is the term number.

1st 2nd 3rd 4th...

n is always a positive integer. You an describe a sequence by giving the **general term** (or nth term.) the general term relates the term number (n) to terms.

Generating sequences

Sequences can be generated by considering the terms that are known and calculating the **term-to-term rule** in order to predict the rest of the sequence.

Generate the first five terms of a sequence using the following formulae:

	Position Number (n)	1	2	3	4	5
	Sequence = 6n + 2					

	Position Number (n)	1	2	3	4	5
	Sequence = 3n - 4					

)	Position Number (n)	1	2	3	4	5
	Sequence = 8 - 3n					

1, 3, 6, 10, 15,

Triangular Numbers

Recognise geometric sequences

In a **geometric sequence**, the term-to-term rule is 'multiply by 'You can find each term by multiplying the previous term in the sequence by a constant value.

Fibonacci sequence

The Fibonacci sequence is named after the Italian mathematician Leonardo Fibonacci . In this se-

It is an **infinite** sequence.

Positive and negative coordinates

The 'x' and 'y' axis extend below 0 so you can plot with negative 'x' and 'y' co-ordinates. The point (0,0) is called the **origin**.

Line segment

A line segment is part of a line defined by two end points.

Midpoint of a line segment

The midpoint is **halfway** between the two end points:

Its **x value** is halfway between the two x values

Its **y value** is halfway between the two y values

To calculate it:

Add both "x" coordinates, divide by 2 Add both "y" coordinates, divide by 2

Straight line graphs

A line on a coordinate grid is called a **graph**. You can describe it by giving the **equation** of the line.

On the grid, draw the graph of x + y = 6.

3

3x - y = 5

(a) Complete the table of values for the graph x + y = 6

