Tessellation

An arrangement of shapes fitted together, especially of polygons in a repeated pattern without gaps or overlapping.

Year 9 foundation topic 6 **Angles**

What careers would use these skills?

Urban and regional planners, surveying engineers, architects, cartographer (for drawing maps)

Angles on a straight line add up to

180°.

$$x + y = 180^{\circ}$$

$$a + b + c + a$$

Angles at a point

Angles at a point add up to 360°

$$a+b+c+d = 360^{\circ}$$

Angles in a triangle

Angles in a triangle add up to 180.

Equilateral triangles have angles of 60°

Angles in parallel lines

Alternate angles are equal. They look like a Z (but don't say that in an exam!)

Corresponding angles are equal. They look like F angles, but never say this in the exam.

Co-interior angles add up to 180°. They look like C angles, but never say this in the exam.

Don't forget about the 4 different types of angle:

Interior angles

Sum of interior angles = (number of sides—2) x 180

Eg. For a decagon

 $(10-2) \times 180 = 1440^{\circ}$

So one interior angle of a decagon is $1440 \div 10 = 144^{\circ}$

Exterior angles

Size of one exterior angle = 360 ÷ number of sides

Eg. An exterior angle of a regular octagon

 $360 \div 8 = 45^{\circ}$

Interior + exterior = 180°

Angles in a quadrilateral

Angles in a quadrilateral add up to 360°.

