

Area		
Shape	Dimensions	Area formula
Square		a^{2}
Rectangle		${ }^{\text {b }}$
Parallelogram		${ }^{\text {bhperp }}$
Triangle		$\frac{b h_{\text {perp }}}{2}$
Trapezium		$\frac{(a+b) h_{\text {perp }}}{2}$
Circle	$\rightarrow r$	πr^{2}
Sector	$\xrightarrow{\stackrel{r}{\leftrightarrows}}$	$\frac{\theta}{360} \pi r^{2}$

Area		
Shape	Dimensions	Area formula
Compound shape	Strategy 1 Solit into shapes Strategy 2 Shadee drea A B B	Strategy 1 Split into shapes $A_{\text {area }}+B_{\text {area }}$ Strategy 2 Shaded area $A_{\text {area }}-B_{\text {area }}$
Surface Area		
Shape	Dimensions	Surface area formula
$\begin{aligned} & \text { General idea } \\ & \text { for all } \\ & \text { shapes } \end{aligned}$		Calculate the area of each face on the shape. Add the up all the areas
Cylinders		$2 \pi r^{2}+\pi D h$
Cones		$\pi r^{2}+\pi r l$
Spheres	\rightarrow	$4 \pi r^{2}$

Shape	Dimensions	Perimeter formula
General idea for all foral shapes		Add up all the side lengths around the shape
Arcs		$\frac{\theta}{360} \pi D$

Converting VOLUME Units

VOLUME is how much 3D space is occupied, and is measured in cubes.
VOLUME consists of Cube Units, so we need to CUBE all our Lengths.

VOLUME conversions use powers of 3 , and usually create very large results. $3 \mathrm{~m}^{3}=? \mathrm{~cm}^{3} \quad$ Need to $\times 100^{3} \quad 3 \times 100 \times 100 \times 100=3000000 \mathrm{~cm}^{3} \sqrt{ }$

